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Abstract
In the context of a two-parameter (α, β) deformation of the canonical
commutation relation leading to nonzero minimal uncertainties in both
position and momentum, the harmonic oscillator spectrum and eigenvectors
are determined by using an extension of the techniques of conventional
supersymmetric quantum mechanics (SUSYQM) combined with shape
invariance under parameter scaling. The resulting supersymmetric partner
Hamiltonians correspond to different masses and frequencies. The exponential
spectrum is proved to reduce to a previously found quadratic spectrum whenever
one of the parameters α, β vanishes, in which case shape invariance under
parameter translation occurs. In the special case where α = β �= 0, the
oscillator Hamiltonian is shown to coincide with that of the q-deformed
oscillator with q > 1 and its eigenvectors are therefore n-q-boson states. In the
general case where 0 �= α �= β �= 0, the eigenvectors are constructed as linear
combinations of n-q-boson states by resorting to a Bargmann representation of
the latter and to q-differential calculus. They are finally expressed in terms of
a q-exponential and little q-Jacobi polynomials.

PACS numbers: 02.30.Gp, 03.65.Fd, 11.30.Pb

1. Introduction

Studies on small distances in string theory and quantum gravity suggest the existence of a
finite lower bound to the possible resolution of length �x0 (see, e.g., [1, 2]). On the other
hand, on large scales there is no notion of plane waves or momentum eigenvectors on generic
curved spaces. It has therefore been suggested that there could also exist a finite lower bound
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to the possible resolution of momentum �p0 (see, e.g., [3]). It is a natural, though nontrivial,
assumption that minimal length and momentum should quantum theoretically be described as
nonzero minimal uncertainties in position and momentum measurements.

Such nonzero minimal uncertainties can be described in the framework of small
corrections to the canonical commutation relation [4, 5]

[x, p] = ih̄(1 + ᾱx2 + β̄p2) (1.1)

with ᾱ � 0, β̄ � 0, and ᾱβ̄ < h̄−2. In such a context, they are given by �x0 =
h̄
√

β̄/(1 − h̄2ᾱβ̄) and �p0 = h̄
√

ᾱ/(1 − h̄2ᾱβ̄), respectively3.
Since the canonical commutation relations lie in the very heart of quantum mechanics,

studying the influence of small corrections to them in a quantum mechanical framework
is interesting in its own right. It has indeed been argued [6] that such corrections may
provide an effective description not only of strings but also of non-point-like particles such
as quasiparticles and various collective excitations in solids, or composite particles such as
nucleons and nuclei.

Solving quantum mechanical problems with the deformed canonical commutation relation
(1.1) may, however, be a difficult task. In the special case where ᾱ = 0 and β̄ > 0, the minimal
uncertainty in the position turns out to be �x0 = h̄

√
β̄, whereas there is no nonzero minimal

momentum uncertainty. As a consequence, equation (1.1) can be represented on momentum
space wavefunctions (although not on position ones). Similarly, in the case where ᾱ > 0
and β̄ = 0, there is only a nonzero minimal uncertainty in the momentum �p0 = h̄

√
ᾱ

and equation (1.1) can be represented on position space wavefunctions. In contrast, in the
general case where ᾱ > 0 and β̄ > 0, there is neither position nor momentum representation,
so that one has to resort to a generalized Fock space representation or, equivalently, to the
corresponding Bargmann representation [4, 5, 7].

The investigation of the harmonic oscillator with Hamiltonian

H = p2

2m
+

1

2
mω2x2 (1.2)

where x and p satisfy the deformed canonical commutation relation (1.1), is an interesting and
nontrivial topic. The eigenvalue problem for such an oscillator

H |ψn〉 = En|ψn〉 n = 0, 1, 2, . . . (1.3)

has been solved exactly only in the case where ᾱ = 0 and β̄ > 0 by using the momentum
representation and the technique of differential equations [8]. This approach has been recently
extended to D dimensions [9] and some ladder operators have been constructed [10]. While it
is obvious that in the case where ᾱ > 0 and β̄ = 0, the eigenvalue problem can be treated in a
similar way, that corresponding to both ᾱ > 0 and β̄ > 0 is more complicated and, as far as
we know, has not been solved so far.

Over the years, it has been shown that supersymmetric quantum mechanics (SUSYQM)
plays an important role in obtaining exact solutions of quantum mechanical problems (see,
e.g., [11, 12]). In fact, all solvable quantum mechanical problems are either supersymmetric
or can be made so.

Among the various exactly solvable potentials, there is a certain class of potentials
characterized by a property known as shape invariance [13]. Shape invariant potentials are
potentials such that their SUSY partner has the same spatial dependence with possibly altered
parameters. For such potentials, both the energy eigenvalues and the wavefunctions can be

3 In [4, 5], the two deforming parameters are denoted by α and β. Here we reserve this notation for the dimensionless
parameters to be introduced in section 2.
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obtained algebraically without solving the differential equation [13, 14]. It turns out that the
formalism of SUSYQM plus shape invariance (connected with translations of parameters) is
intimately related to the factorization method developed by Schrödinger [15] and by Infeld
and Hull [16] (for a comparison between these two methods and corresponding references see
[12]). Other types of shape invariance, such as that connected with parameter scaling [17, 18],
have provided a lot of new exactly solvable problems.

The purpose of the present paper is to extend SUSYQM and the notion of shape invariance
to eigenvalue problems in the context of the deformed canonical commutation relation (1.1)
and to apply such an extension to the case of the harmonic oscillator with nonzero minimal
uncertainties in both position and momentum (i.e., ᾱ > 0 and β̄ > 0). As a result, we will
derive exact results for the energy spectrum and the eigenstates of such a system in a purely
algebraic way.

This paper is organized as follows. The harmonic oscillator spectrum is obtained in
section 2. Some special cases are reviewed in section 3. In section 4, the Hamiltonian
eigenvectors are determined in explicit form. Section 5 contains the conclusion. Finally, some
mathematical details are to be found in the appendix.

2. Harmonic oscillator spectrum in the general case

It is convenient to introduce dimensionless position and momentum operators, X = x/a and
P = pa/h̄, where a = √

h̄/(mω) is the oscillator characteristic length. They satisfy the
commutation relation

[X,P ] = i(1 + αX2 + βP 2) (2.1)

where α and β denote the dimensionless parameters α = ᾱh̄/(mω) and β = β̄mh̄ω,
respectively. Here we have α � 0, β � 0, and αβ < 1.

The dimensionless harmonic oscillator Hamiltonian is then given by

h = H

h̄ω
= 1

2
(P 2 + X2) (2.2)

and the corresponding eigenvalue problem reads

h|ψn〉 = en|ψn〉 n = 0, 1, 2, . . . (2.3)

where en = En/(h̄ω). To find the spectrum en, n = 0, 1, 2, . . . , we shall proceed in two steps:
we will show that the Hamiltonian h is factorizable, then we will prove that the factorized
Hamiltonian satisfies a condition similar to the shape invariance condition of conventional
SUSYQM.

Let us first try to write h in the factorized form

h = B+(g, s)B−(g, s) + ε0 (2.4)

where

B±(g, s) = 1√
2
(sX ∓ igP ) (2.5)

and ε0 is the factorization energy. In (2.5), g and s are assumed to be two positive constants
that are some functions of α, β and which go to 1 in the limit α, β → 0. The operators
B+(g, s) and B−(g, s) are therefore counterparts of the standard harmonic oscillator creation
and annihilation operators, a+ = (X − iP)/

√
2 and a = (X + iP)/

√
2, respectively.

Inserting (2.5) in (2.4) leads to the equation

h = 1
2 [(g2 − βgs)P 2 + (s2 − αgs)X2 − gs] + ε0. (2.6)
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For this expression of h to be equivalent to that given in (2.2), three conditions have to be
fulfilled, namely

g2 − βgs = 1 (2.7)

s2 − αgs = 1 (2.8)

ε0 = 1
2gs. (2.9)

It can be easily shown that equations (2.7) and (2.8) admit positive solutions for g and s,
given by

g = sk s = 1√
1 − αk

(2.10)

where

k ≡ 1
2 (β − α) +

√
1 + 1

4 (β − α)2. (2.11)

In deriving the expression of s in (2.10), use has been made of the equivalence between the
conditions 1 − αk > 0 and αβ < 1. Furthermore, one checks that k, g, s → 1 for α, β → 0,
as it should be. We conclude that h can be written in form (2.4), where the factorization energy
ε0 is given in (2.9) and the two parameters α, β of the problem have been replaced by their
combinations g, s, defined in (2.10) and (2.11).

Let us now consider a hierarchy of Hamiltonians

hi = B+(gi, si)B
−(gi, si) +

i∑
j=0

εj i = 0, 1, 2, . . . (2.12)

whose first member coincides with (2.4), i.e., h0 = h. Here gi, si, εi, i = 1, 2, . . . are assumed
to be some positive parameters and g0 = g, s0 = s. We shall now proceed to prove that one
can find values of gi, si, εi, i = 1, 2, . . ., such that the condition

B−(gi, si)B
+(gi, si) = B+(gi+1, si+1)B

−(gi+1, si+1) + εi+1 (2.13)

is satisfied. Equation (2.13), written in operator form, is exactly equivalent to the equation
used in the factorization method [15, 16] (see also [19]) and is similar to the shape invariance
condition of conventional SUSYQM [11–13]. Note that the factorization method (and thus
the SUSY one) is quite general (see, e.g., [19]) and can be used for finding the eigenvalues of
arbitrary Hermitian operators with a bounded-from-below spectrum. As it is obvious that the
eigenvalues of the Hamiltonian (2.2) are positive, we can apply the factorization method or
the SUSY one with shape invariance to our problem.

In explicit form, equation (2.13) reads
1
2

[(
g2

i + βgisi

)
P 2 +

(
s2
i + αgisi

)
X2 + gisi

]
= 1

2

[(
g2

i+1 − βgi+1si+1
)
P 2 +

(
s2
i+1 − αgi+1si+1

)
X2 − gi+1si+1

]
+ εi+1 (2.14)

where i = 0, 1, 2, . . . . This leads to the set of three relations

g2
i+1 − βgi+1si+1 = g2

i + βgisi (2.15)

s2
i+1 − αgi+1si+1 = s2

i + αgisi (2.16)

εi+1 = 1
2 (gisi + gi+1si+1). (2.17)

At this stage, it is worth noting that by multiplying (2.15) by α and (2.16) by β, then
subtracting, we get the equation

g2
i+1 − γ 2s2

i+1 = g2
i − γ 2s2

i (2.18)



Harmonic oscillator with nonzero minimal uncertainties 10377

where

γ ≡
√

β

α
. (2.19)

On iterating (2.18) and using (2.7) and (2.8), it is then obvious that the recursion for gi, si

runs along the arc of the hyperbola g2 − γ 2s2 = 1 − γ 2 that lies in the first quadrant of the
(g, s) plane. Since the equation of this hyperbola can also be written as uv = 1 − γ 2, where
u ≡ g + γ s = 0 and v ≡ g − γ s = 0 are the equations of the asymptotes, it may prove useful
to replace (g, s) by (u, v).

Let us therefore introduce the new combinations of parameters

ui = gi + γ si vi = gi − γ si . (2.20)

The inverse transformation reads

gi = 1

2
(ui + vi) si = 1

2γ
(ui − vi) (2.21)

where the assumptions gi, si > 0 impose that ui > |vi |. On substituting (2.21) into (2.15),
(2.16), then combining the two resulting equations, we obtain the relations

u2
i+1 + qv2

i+1 = v2
i + qu2

i (2.22)

ui+1vi+1 = uivi (2.23)

where

q ≡ 1 +
√

αβ

1 − √
αβ

> 1 (2.24)

and equation (2.23) coincides with (2.18).
Equations (2.22) and (2.23) suggest a further transformation from ui, vi to

di = uivi ti = vi

ui

(2.25)

where di and ti have the same sign, which is that of vi , and |ti | < 1. According to (2.23), di is
actually independent of i,

di = d = uv (2.26)

which amounts to the hyperbola equation previously obtained. On the other hand,
equation (2.22) can be rewritten as

qti+1 − ti = qti+1 − ti

ti ti+1
(2.27)

thus showing that qti+1 − ti = 0 or

ti = q−i t t ≡ v

u
= k − γ

k + γ
. (2.28)

From (2.25), (2.26) and (2.28), we also obtain

ui = qi/2u vi = q−i/2v. (2.29)

We conclude that the extended shape invariance condition (2.13) can indeed be satisfied by
keeping the combination of parameters d constant while scaling the other combination of
parameters t according to equation (2.28). Note that for i → ∞, vi → 0, so that the recursion
actually reaches the hyperbola asymptote lying in the first quadrant of the (g, s) plane.
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The eigenvalues en of h are therefore given by

en(q, t) =
n∑

i=0

εi =
n−1∑
i=0

gisi +
1

2
gnsn = 1

4γ

(
n−1∑
i=0

(
u2

i − v2
i

)
+

1

2

(
u2

n − v2
n

))

= 1

4γ

{
u2

(
[n]q +

1

2
qn

)
− v2

(
[n]q−1 +

1

2
q−n

)}

= 1

4γ

{(
u2 − v2

qn−1

)
[n]q +

1

2

(
u2qn − v2

qn

)}

= u2

4γ

{(
1 − t2

qn−1

)
[n]q +

1

2

(
qn − t2

qn

)}
(2.30)

where we have successively used equations (2.9), (2.17), (2.21), (2.29), (2.28) and the
definitions

[n]q ≡ qn − 1

q − 1
[n]q−1 ≡ q−n − 1

q−1 − 1
= q−n+1[n]q . (2.31)

In (2.30), we employ the notation en(q, t) to stress that, apart from a multiplicative constant
u2/(4γ ), the energy eigenvalues depend on the two parameters q and t, defined in (2.24) and
(2.28), respectively.

It can be easily shown that q(α, β) = q(β, α), u2(α, β)/[4γ (α, β)] = u2(β, α)/

[4γ (β, α)] and t (α, β) = −t (β, α), where we explicitly write down the dependence on the
deformation parameters α, β. As a result, the eigenvalues en are symmetric under exchange
of α and β.

From (2.30), we obtain for the ground-state and excitation energies

e0(q, t) = u2

8γ
(1 − t2) (2.32)

and

en(q, t) − e0(q, t) = 1

2
K2

(
1 − t2

qn

)
[n]q n = 1, 2, . . . (2.33)

where

K ≡ u

√
q + 1

4γ
. (2.34)

Since q > 1 and t2 < 1, the excitation energies grow exponentially to infinity when n → ∞.
Such a feature has already been encountered before in SUSYQM and shape invariance
associated with parameter scaling [17].

On using (2.5), (2.21), (2.28) and (2.29), the Hamiltonians (2.12) of the SUSYQM
hierarchy can be written as

hi = 1
2 (aiP

2 + biX
2) + ci i = 0, 1, 2, . . . (2.35)

where

ai = u2

2(q + 1)
(qi + t)

(
1 +

t

qi−1

)

bi = u2

2γ 2(q + 1)
(qi − t)

(
1 − t

qi−1

)
(2.36)

ci = u2

4γ

(
1 − t

qi−1

)
[i]q .
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For the supersymmetric partner of h = h0, for instance, we obtain

h1 = 1

1 − αk

{
1

2
[1 + (2β − α)k]P 2 +

1

2
(1 + αk)X2 + k

}
(2.37)

where k is defined in (2.11). Going back to variables with dimensions, we get

Hi ≡ h̄ωhi = p2

2mi

+
1

2
miω

2
i x

2 + cih̄ω (2.38)

with

mi = m

ai

ωi =
√

aibiω. (2.39)

We conclude that the harmonic oscillator with nonzero minimal uncertainties in both
position and momentum belongs to a hierarchy of Hamiltonians of the same type but with
different masses and frequencies. The change of the kinetic energy term, appearing naturally
in addition to the usual modification of the potential energy one, is a new feature arising from
the deformation of the canonical commutation relation. It is distinct from the supersymmetric
generation of combined potential and effective-mass variations that may be effected for
Hamiltonians with both a position-dependent effective mass and a position-dependent potential
in the context of conventional SUSYQM [20].

3. Some special cases

In the present section, we will examine the two special cases where one of the parameters,
e.g., α, vanishes or both parameters α, β are equal.

3.1. Limit α → 0

We plan to show that in the limit α → 0, the energy spectrum (2.30) reproduces the results
previously obtained in the momentum representation [8, 9].

For small α values, the parameter q behaves as

q � 1 + 2
√

αβ + O(α) (3.1)

so that

qn � 1 + 2n
√

αβ + O(α) [n]q � n + O(
√

α). (3.2)

Furthermore,

1

4γ

(
u2 − v2

qn−1

)
� gs +

1

2
βs2(n − 1) + O(

√
α)

(3.3)
1

8γ

(
u2qn − v2

qn

)
� 1

2
gs +

1

2
βs2n + O(

√
α).

Inserting such results in (2.30), we get

en � gs
(
n + 1

2

)
+ 1

2βs2n2 + O(
√

α) (3.4)

where

g � 1
2β +

√
1 + 1

4β2 + O(α) s � 1 + O(α). (3.5)

In the limit α → 0, we therefore obtain

en(β) = (
n + 1

2

)√
1 + 1

4β2 + 1
2β

(
n2 + n + 1

2

)
(3.6)
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in agreement with [8, 9]. We conclude that in such a limit, the exponential spectrum of the
general case reduces to a quadratic one.

It is worth noting that the spectrum corresponding to α = 0 may also be derived directly
from SUSYQM and shape invariance without resorting to a limiting procedure. Going back
to the factorization conditions (2.7)–(2.9) and setting α = 0 therein, we are only left with a

single parameter g = 1
2β +

√
1 + 1

4β2 since s = 1. Among the shape invariance conditions
(2.15)–(2.17), only the first and third ones survive, namely

gi+1(gi+1 − β) = gi(gi + β) εi+1 = 1
2 (gi + gi+1). (3.7)

The solution of the former is gi+1 = gi + β, thus giving gi = g + iβ, while the latter directly
leads to the energy spectrum (3.6) by using the relation en(β) = ∑n

i=0 εi .
This shows that the harmonic oscillator with only a nonzero minimal uncertainty in the

position is shape invariant under translation of the parameter g. The Hamiltonians hi of the
SUSYQM hierarchy now reduce to

hi = 1
2

[(
1 + i2β2 + 2iβ

√
1 + 1

4β2
)
P 2 + X2 + i

(
iβ + 2

√
1 + 1

4β2
)]

i = 0, 1, 2, . . . .

(3.8)

From (2.38) and (2.39), it follows that in this special case miω
2
i = mω2, so that only the

kinetic energy term in the Hamiltonian Hi is changed.

3.2. Case α = β �= 0

There also occurs a simplification in the general formula (2.30) for the energy spectrum
whenever the dimensionless parameters α and β are equal, which means that the original
parameters ᾱ and β̄ are related through ᾱ = m2ω2β̄. In such a case, we find

γ = k = 1 g = s = 1√
1 − α

q = 1 + α

1 − α
(3.9)

and thus

u = 2g v = t = 0. (3.10)

After some simple transformation, equation (2.30) can be written as

en(q) = 1
4 (q + 1){(q + 1)[n]q + 1} = 1

4 (q + 1)([n]q + [n + 1]q). (3.11)

On the other hand, the Hamiltonians hi of the SUSYQM hierarchy now become

hi = 1
2 {qi(P 2 + X2) + (q + 1)[i]q}. (3.12)

From (2.38) and (2.39), it follows that in Hi both the mass and the frequency are scaled
according to mi = q−im, ωi = qiω.

The energy spectrum (3.11) is similar to that of the q-deformed harmonic oscillator

hosc = 1
4 (q + 1){b, b+} (3.13)

where b+ and b are q-deformed boson creation and annihilation operators satisfying the relation
[21, 22]

bb+ − qb+b = I. (3.14)

Such operators can indeed be used to construct n-q-boson states

|n〉q = (b+)n√
[n]q!

|0〉q n = 0, 1, 2, . . . (3.15)
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spanning an orthonormal basis of a deformed Fock space Fq , i.e.,

q〈n′|n〉q = δn′,n

∞∑
n=0

|n〉qq〈n| = I. (3.16)

In (3.15), |0〉q is the normalized vacuum state, i.e., b|0〉q = 0 and q〈0|0〉q = 1, and the
q-factorial

[n]q! ≡
{

1 if n = 0
[n]q[n − 1]q · · · [1]q if n = 1, 2, . . .

(3.17)

is defined in terms of the q-numbers [n]q introduced in (2.31). Since

b+|n〉q = √
[n + 1]q |n + 1〉q b|n〉q = √

[n]q |n − 1〉q (3.18)

the n-q-boson states |n〉q turn out to be the eigenvectors of hosc with eigenvalues en(q), i.e.,
hosc|n〉q = en(q)|n〉q, n = 0, 1, 2, . . . .

This means that in the α = β �= 0 case, the harmonic oscillator Hamiltonian (2.2) with
nonzero minimal uncertainties in position and momentum must be reducible to the q-deformed
oscillator Hamiltonian (3.13). Such an assertion is easily proved by setting

X = 1

2

√
q + 1(b+ + b) P = i

2

√
q + 1(b+ − b) (3.19)

or, conversely,

b+ = 1√
q + 1

(X − iP) b = 1√
q + 1

(X + iP). (3.20)

It can indeed be shown from the commutation relation (2.1) that b+ and b, as defined in (3.20),
fulfil the q-commutation relation (3.14) and are such that h = hosc.

4. Harmonic oscillator eigenvectors in the general case

To construct the eigenvectors of the harmonic oscillator Hamiltonian (2.2) in the case where
neither α nor β vanishes, one has to resort to a generalized Fock space representation [4, 5, 7],
wherein

X = 1

2

√
γ (q + 1)(b+ + b) P = i

2

√
q + 1

γ
(b+ − b) (4.1)

are represented in terms of creation and annihilation operators

b+ = 1√
q + 1

(
1√
γ

X − i
√

γP

)
b = 1√

q + 1

(
1√
γ

X + i
√

γP

)
(4.2)

satisfying the q-commutation relation (3.14). It is worth noting that in the special case where
α = β, considered in section 3.2, the operators (4.2) reduce to the operators (3.20) as a
consequence of equation (3.9). In the general case where α �= β, however, the Hamiltonians
h and hosc, defined in (2.2) and (3.13), respectively, do not coincide any more since we have
instead the relation

h = 1

8
(q + 1)

((
γ − 1

γ

)
[(b+)2 + b2] +

(
γ +

1

γ

)
{b, b+}

)
. (4.3)

Hence the eigenvectors of h are some linear combinations of the n-q-boson states defined in
(3.15).
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SUSYQM and shape invariance provide us with some prescriptions to construct such
linear combinations [11, 12, 14]. The ground state is indeed the normalized state annihilated
by the operator B−(g, s), defined in (2.5), which we shall rewrite here as B−(q, t), i.e.,

B−(q, t)|ψ0(q, t)〉 = 0 〈ψ0(q, t)|ψ0(q, t)〉 = 1 (4.4)

while the normalized excited states can be determined recursively through the equations

|ψn+1(q, t)〉 = [en+1(q, t) − e0(q, t)]−1/2B+(q, t)|ψn(q, t1)〉 n = 0, 1, 2, . . . (4.5)

where, according to (2.28), t1 = t/q.
On using (2.21), (2.28), (2.29) and (4.1), the operators B±(q, t) can be written as linear

combinations of b+ and b,

B+(q, t) =
√

q + 1

8γ
(ub+ − vb) = 1√

2
K(b+ − tb) (4.6)

B−(q, t) =
√

q + 1

8γ
(ub − vb+) = 1√

2
K(b − tb+) (4.7)

where K is given in (2.34).
To work out the explicit form of |ψn(q, t)〉, n = 0, 1, 2, . . . , it is convenient to use the

(q-deformed) Bargmann representation of the q-boson operators b+, b, associated with the
corresponding q-deformed coherent states [22]. In such a representation the n-q-boson states
|n〉q are represented by the functions

ϕn(q; ξ) = ξn√
[n]q!

(4.8)

so that any vector |ψ〉q = ∑∞
n=0 cn(q)|n〉q ∈ Fq is realized by the entire function

ψ(q; ξ) = ∑∞
n=0 cn(q)ϕn(q; ξ), belonging to a q-deformed Bargmann space Bq , whose scalar

product has been given in [22]. The operators b+ and b become the operator of multiplication
by a complex number ξ and the q-differential operator Dq , defined by

Dqψ(q; ξ) = ψ(q; qξ) − ψ(q; ξ)

(q − 1)ξ
(4.9)

respectively. Hence, B±(q, t) are represented by

B+(q, t) = 1√
2
K(ξ − tDq) B−(q, t) = 1√

2
K(Dq − tξ ). (4.10)

The first equation in (4.4) can therefore be rewritten as

(Dq − tξ )ψ0(q, t; ξ) = 0. (4.11)

As detailed in the appendix, the solution of this first-order q-difference equation can be easily
obtained as

ψ0(q, t; ξ) = N0(q, t)Eq2

(
t

q + 1
ξ 2

)
(4.12)

where the q-exponential Eq(ξ) is defined by [23]

Eq(ξ) =
∞∑

n=0

ξn

[n]q!
(4.13)

and N0(q, t) is some normalization coefficient, determined by the second condition in
equation (4.4).
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From (4.8) and (4.13), it follows that the ground-state Bargmann wavefunction can also
be written as

ψ0(q, t; ξ) = N0(q, t)

∞∑
ν=0

(
[2ν − 1]q!!

[2ν]q!!

)1/2

tνϕ2ν(q; ξ) (4.14)

where

[2ν − 1]q!! ≡
{

1 if ν = 0
[2ν − 1]q[2ν − 3]q · · · [1]q if ν = 1, 2, . . .

(4.15)

and

[2ν]q!! ≡
{

1 if ν = 0
[2ν]q[2ν − 2]q · · · [2]q if ν = 1, 2, . . . .

(4.16)

The ground state is therefore a superposition of all even-n-q-boson states.
The orthonormality of the functions ϕn(q; ξ) in Bq implies that the normalization

coefficient in (4.12) and (4.14) is given by

N0(q, t) =
( ∞∑

ν=0

[2ν − 1]q!!

[2ν]q!!
t2ν

)−1/2

= [1φ0(q; —; q2, t2)]−1/2. (4.17)

Here rφs(a1, a2, . . . , ar ; b1, b2, . . . , bs; q, z) denotes a basic hypergeometric function (see
[24] and the appendix). It can be easily checked that the series in (4.17) is convergent for
all allowed t2 values, hence showing that the ground-state eigenvector is normalizable as it
should be.

Considering next the excited states, we find that in Bargmann representation, the recursion
relation (4.5) becomes the equation

ψn+1(q, t; ξ) =
{

[n + 1]q

(
1 − t2

qn+1

)}−1/2

(ξ − tDq)ψn(q, t1; ξ) (4.18)

where use has been made of equations (2.33) and (4.10). As shown in the appendix, the
solution of this equation is given by

ψn(q, t; ξ) = Nn(q, t)Pn(q, t; ξ)Eq2

(
t

(q + 1)qn
ξ 2

)
. (4.19)

Here Pn(q, t; ξ) denotes an nth-degree polynomial in ξ , satisfying the relation

Pn+1(q, t; ξ) = ξPn

(
q,

t

q
; ξ

)
− ξ

t2

qn+1
Pn

(
q,

t

q
; qξ

)
− tDqPn

(
q,

t

q
; ξ

)
(4.20)

with P0(q, t; ξ) ≡ 1, andNn(q, t) is a normalization coefficient fulfilling the recursion relation

Nn+1(q, t) =
{

[n + 1]q

(
1 − t2

qn+1

)}−1/2

Nn

(
q,

t

q

)
(4.21)

with N0(q, t) given in (4.17).
The solution of equation (4.21) is easily found to be given by

Nn(q, t) = {
[n]q!(q−2n+1t2; q)n1φ0(q; —; q2, q−2nt2)

}−1/2
(4.22)

where the symbol (a; q)n is defined in equation (A.5).
Solving equation (4.20) for the polynomials Pn(q, t; ξ) looks however more involved.

First of all, let us remark that this equation may be considered as some q-difference analogue
of a differential equation satisfied by Hermite polynomials

Hn+1(x) = 2xHn(x) − H ′
n(x) (4.23)
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which can be obtained by combining equations (22.7.13) and (22.8.7) of [25]. As a matter of
fact, in the formal limit where q → 1 while t2 remains different from one4, equation (4.20)
can be rewritten as

Qn+1(t; ξ) = (1 − t2)ξQn(t; ξ) − tQ′
n(t; ξ) (4.24)

with Qn(t; ξ) ≡ Pn(1, t; ξ), because the q-differential operator Dq goes to the ordinary
differential operator d/dξ . From (4.23), the solution of (4.24) is found to be

Qn(t; ξ) = cn(t)Hn[a(t)ξ ] a(t) =
√

1 − t2

2t
c(t) =

√
1

2
t (1 − t2). (4.25)

We may therefore regard Pn(q, t; ξ) as some two-parameter deformation of Hermite
polynomials. As far as we know, such a deformation has not been considered elsewhere.
In the remainder of this section, we shall therefore devote ourselves to deriving an explicit
solution to equation (4.20).

It is straightforward to show that for the first few n values, the polynomials Pn(q, t; ξ)

are given by

P1(q, t; ξ) =
(

1 − t2

q

)
ξ (4.26)

P2(q, t; ξ) =
(

1 − t2

q3

)[(
1 − t2

q

)
ξ 2 − t

]
(4.27)

P3(q, t; ξ) =
(

1 − t2

q5

)(
1 − t2

q3

)[(
1 − t2

q

)
ξ 3 − t

q
(1 + q + q2)ξ

]
. (4.28)

For general n values, it is clear from the structure of equation (4.20) that

Pn(q, t;−ξ) = (−1)nPn(q, t; ξ) (4.29)

which actually agrees with the examples shown in (4.26)–(4.28). We may therefore look for
a solution of the type

Pn(q, t; ξ) =
n∑

m=0

1

2
[1 + (−1)n−m]fn,m(q, t)ξm (4.30)

where fn,m(q, t),m = n, n − 2, . . . , 0(1), are some yet undetermined coefficients.
Inserting (4.30) in (4.20) and using the property Dqξ

m = [m]qξm−1, we get the recursion
relations

fn+1,m(q, t) =
(

1 − t2

qn−m+2

)
fn,m−1

(
q,

t

q

)
− t[m + 1]qfn,m+1

(
q,

t

q

)
m = n − 1, n − 3, . . . , 0(1) (4.31)

fn+1,n+1(q, t) =
(

1 − t2

q

)
fn,n

(
q,

t

q

)
(4.32)

with f0,0(q, t) ≡ 1. In (4.31), we have assumed that fn,−1(q, t) = 0 for odd values of n.
The solution of equation (4.32) is given by

fn,n(q, t) =
n−1∏
k=0

(
1 − t2

q2k+1

)
=

(
t2

q2n−1
; q2

)
n

(4.33)

4 By formal limit, we mean a limit that does not correspond to any physical values of the parameters α, β. When
q → 1, we indeed obtain from (2.24) that either α → 0 or β → 0, which, from (2.11), (2.19) and (2.28), implies that
either t → −1 or t → 1.
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with
∏−1

k=0 ≡ 1 and (a; q2)n defined as in (A.5). As proved in the appendix, the solution of
equation (4.31) is provided by

fn,m(q, t) = [n]q!

[m]q![n − m]q!!

(
− t

q(n+m−2)/2

)(n−m)/2 (
t2

q2n−1
; q2

)
(n+m)/2

(4.34)

where m = n − 2, n − 4, . . . , 0(1). Comparison between equations (4.33) and (4.34) shows
that the latter can be extended to all allowed m values, i.e., m = n, n − 2, . . . , 0(1). Note that
the property fn,−1(q, t) = 0, for odd n values, can be retrieved by using the usual assumption
[n]q! → ∞ if n → −1.

Equations (4.30) and (4.34) therefore provide us with the general solution to equation
(4.20), corresponding to P0(q, t; ξ) = 1, and they include equations (4.26)–(4.28) as special
cases.

To relate the polynomials Pn(q, t; ξ) with some known basic polynomials, let us first
express them as basic hypergeometric functions [24]. Distinguishing between even and odd n
values and using equations (A.4)–(A.7), we obtain

P2ν(q, t; ξ) = (q; q2)ν

(
t2

q4ν−1
; q2

)
ν

(
t

qν−1(q − 1)

)ν

× 2φ1

[
q−2ν,

t2

q2ν−1
; q; q2,−q2ν(q − 1)

ξ 2

t

]
(4.35)

P2ν+1(q, t; ξ) = (q3; q2)ν

(
t2

q4ν+1
; q2

)
ν+1

(
t

qν(q − 1)

)ν

ξ

× 2φ1

[
q−2ν,

t2

q2ν−1
; q3; q2,−q2ν+1(q − 1)

ξ 2

t

]
(4.36)

where ν = 0, 1, 2, . . . . Since in (4.35) and (4.36), the parameter a1 of the basic hypergeometric
series is a1 = q−2ν , where 2ν is a nonnegative integer, we deal here with terminating series.

From equations (4.35), (4.36), and the definition of little q-Jacobi polynomials [24]

pn(x; a, b; q) = 2φ1(q
−n, abqn+1; aq; q, qx) (4.37)

it is now obvious that the polynomials Pn(q, t; ξ) can be re-expressed in terms of the latter as

P2ν(q, t; ξ) = (q; q2)ν

(
t2

q4ν−1
; q2

)
ν

(
t

qν−1(q − 1)

)ν

pν

[
−q2ν−2(q − 1)

ξ 2

t
; 1

q
,

t2

q4ν
; q2

]
(4.38)

P2ν+1(q, t; ξ) = (q3; q2)ν

(
t2

q4ν+1
; q2

)
ν+1

(
t

qν(q − 1)

)ν

ξ

×pν

[
−q2ν−1(q − 1)

ξ 2

t
; q,

t2

q4ν+2
; q2

]
. (4.39)

This completes the determination of the eigenfunctions (4.19) of the harmonic oscillator
Hamiltonian (2.2) in (q-deformed) Bargmann representation. Combining equations (4.8),
(4.12), (4.19) and (4.30), we can rewrite them as linear combinations of even- or odd-n-q-
boson wavefunctions

ψ2ν(q, t; ξ) = N2ν(q, t)

∞∑
σ=0


min(σ,ν)∑

µ=0

√
[2σ ]q!

[2σ − 2µ]q!!
f2ν,2µ(q, t)

(
t

q2ν

)σ−µ


ϕ2σ (q, ξ)

(4.40)
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ψ2ν+1(q, t; ξ) = N2ν+1(q, t)

∞∑
σ=0


min(σ,ν)∑

µ=0

√
[2σ + 1]q!

[2σ − 2µ]q!!
f2ν+1,2µ+1(q, t)

(
t

q2ν+1

)σ−µ




×ϕ2σ+1(q, ξ) (4.41)

according to whether n is even or odd.

5. Conclusion

In the present paper, we have determined in a purely algebraic way both the spectrum and the
eigenvectors of the harmonic oscillator with nonzero minimal uncertainties in both position
and momentum by availing ourselves of an extension of SUSYQM and shape invariance
powerful techniques to the case of the deformed canonical commutation relation (1.1).

In the present context, shape invariance is related to the scaling of some parameter
t, depending in a complicated way upon the two deforming parameters ᾱ, β̄ (or the two
dimensionless ones α, β) entering the canonical commutation relation. As occurs in
other examples involving parameter scaling [17], the oscillator spectrum turns out to be
exponential. The supersymmetric partner Hamiltonians correspond to both different masses
and frequencies. Such an unusual feature is a direct consequence of the deformation of the
commutation relation and is distinct from the combined potential and effective-mass variations
that may be effected in the case of a position-dependent effective mass in the context of
conventional SUSYQM [20].

We have proved that whenever one of the deforming parameters vanishes, e.g., α → 0
and β �= 0, our exponential spectrum goes to the quadratic one, previously found by solving
the deformed Schrödinger differential equation [8, 9]. Such a quadratic spectrum may also be
derived from SUSYQM and shape invariance connected with parameter translation.

Furthermore, we have shown that when α = β �= 0 or ᾱ = m2ω2β̄ �= 0, the harmonic
oscillator with nonzero minimal uncertainties in both position and momentum reduces to the
q-deformed harmonic oscillator corresponding to q > 1 [22] and its eigenvectors therefore
coincide with the n-q-boson states with n = 0, 1, 2, . . . .

Finally, in the general case where 0 �= α �= β �= 0, we have constructed the oscillator
eigenvectors as linear combinations of n-q-boson states by resorting to a (q-deformed)
Bargmann representation of the latter and to q-differential calculus. The ground state can
be expressed in terms of the q-exponential of an operator proportional to the square of the
q-boson creation operator, acting on the vacuum, while the excited states contain as extra
factors nth-degree polynomials in the creation operator. The latter are some two-parameter
deformations of Hermite polynomials and can also be related to little q-Jacobi polynomials.
It is worth noting that operators similar, but not identical, to that occurring in the ground-
state eigenvector are familiar in other contexts, such as those of squeezed states [26] and of
Bose–Einstein condensates [27].
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Appendix. Some results used in the determination of the harmonic oscillator
eigenvectors

The q-exponential used in the present paper is defined by [23]

Eq(ξ) =
∞∑

n=0

ξn

[n]q!
(A.1)

where the q-factorial [n]q! is given in (3.17). For q > 1 (see equation (2.24)), it converges for
all finite values of ξ ∈ C. It is the solution of the q-difference equation

DqEq(aξ) = aEq(aξ) a ∈ C (A.2)

subject to the condition that Eq(0) = 1.
It follows from definition (4.9) and property (A.2) that

DqEq2(aξ 2) = Eq2(aq2ξ 2) − Eq2(aξ 2)

(q − 1)ξ
= a(q + 1)ξ

Eq2(aq2ξ 2) − Eq2(aξ 2)

(q2 − 1)aξ 2

= a(q + 1)ξEq2(aξ 2). (A.3)

Hence the function ψ0(q, t; ξ), defined in (4.12), satisfies the difference equation (4.11).
The basic hypergeometric function rφs(a1, a2, . . . , ar ; b1, b2, . . . , bs; q, z), generalizing

the conventional one rFs(a1, a2, . . . , ar ; b1, b2, . . . , bs; z), is defined by [24]

rφs(a1, a2, . . . , ar ; b1, b2, . . . , bs; q, z)

=
∞∑

n=0

(a1; q)n(a2; q)n · · · (ar; q)n

(q; q)n(b1; q)n(b2; q)q · · · (bs; q)n
[(−1)nqn(n−1)/2]1+s−rzn (A.4)

where z ∈ C and

(a; q)n ≡
{

1 if n = 0
(1 − a)(1 − aq) · · · (1 − aqn−1) if n = 1, 2, . . . .

(A.5)

In (A.4), it is assumed that the parameters b1, b2, . . . , bs are such that the denominator factors
in the terms of the series are never zero. Since (q−m; q)n = 0 if n = m + 1,m + 2, . . . , an rφs

series terminates if one of its numerator parameters is of the form q−m with m = 0, 1, 2, . . . .

When dealing with nonterminating series, it is assumed that the parameters and the variable
are such that the series converges absolutely.

Some useful relations connecting (a; q)n with the q-double factorials defined in (4.15)
and (4.16), as well as the latter with q-factorials, are

[2ν]q!! = (q2; q2)ν

(1 − q)ν
[2ν − 1]q!! = (q; q2)ν

(1 − q)ν
[ν]q2 ! = [2ν]q!!

(q + 1)ν
. (A.6)

We may also note the interesting relations [24]

(a; q)n+k = (a; q)n(aqn; q)k (a−1q1−n; q)n = (a; q)n(−a−1)nq−n(n−1)/2. (A.7)

Let us now prove that the functions ψn(q, t; ξ), defined in (4.19), solve equation (4.18)
provided conditions (4.20) and (4.21) are satisfied. For such a purpose, we shall apply the
well-known rule for q-derivating a product of functions [23]

Dqf (ξ)g(ξ) = f (qξ)Dqg(ξ) + g(ξ)Dqf (ξ). (A.8)
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Substituting equation (4.19) into the right-hand side of (4.18) and using (A.8) and (A.3)
successively, we obtain

ψn+1(q, t; ξ) =
{

[n + 1]q

(
1 − t2

qn+1

)}−1/2

Nn(q, t1)

{
ξPn(q, t1; ξ)Eq2

(
t1

(q + 1)qn
ξ 2

)

− tPn(q, t1; qξ)DqEq2

(
t1

(q + 1)qn
ξ 2

)
− tEq2

(
t1

(q + 1)qn
ξ 2

)
DqPn(q, t1; ξ)

}

=
{

[n + 1]q

(
1 − t2

qn+1

)}−1/2

Nn(q, t1)

{
ξPn(q, t1; ξ) − tPn(q, t1; qξ)

t1

qn
ξ

− tDqPn(q, t1; ξ)

}
Eq2

(
t1

(q + 1)qn
ξ 2

)
(A.9)

which should coincide with equation (4.19) with n + 1 substituted for n. Comparison between
the right-hand sides of both equations directly leads to (4.20) and (4.21), which completes the
proof.

Let us finally consider the solution to the recursion relation (4.31). Substituting
equation (4.34), where use is made of definition (A.5), into the right-hand side of (4.31),
we get

fn+1,m(q, t) =
(

1 − t2

qn−m+2

)
[n]q!

[m − 1]q![n − m + 1]q!!

(
− t

q(n+m−1)/2

)(n−m+1)/2

×
n−1∏

k=(n−m+1)/2

(
1 − t2

q2k+3

)
− t[m + 1]q

[n]q!

[m + 1]q![n − m − 1]q!!

×
(

− t

q(n+m+1)/2

)(n−m−1)/2 n−1∏
k=(n−m−1)/2

(
1 − t2

q2k+3

)

= [n]q!

[m]q![n − m + 1]q!!
([m]q + qm[n − m + 1]q)

(
− t

q(n+m−1)/2

)(n−m+1)/2

×
n−1∏

k=(n−m−1)/2

(
1 − t2

q2k+3

)

= [n + 1]q!

[m]q![n − m + 1]q!!

(
− t

q(n+m−1)/2

)(n−m+1)/2 (
t2

q2n+1
; q2

)
(n+m+1)/2

(A.10)

where, in the last step, we employ the relation

[m]q + qm[n − m + 1]q = [n + 1]q (A.11)

and equation (A.5) again. The final result in (A.10) coincides with equation (4.34) for
n replaced by n + 1. We conclude that equation (4.34) provides us with the solution to
equation (4.31) corresponding to f0,0(q, t) = 1.
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